Machine Learning for Medical Language
Domain adaptation
Patient representation learning
Large language models
MLML
Bluesky
Email PI Tim Miller
Computational Health Informatics Program
Belligoli, P., Bitterman, D., Miller, T. (2025). Do They Really Know? Evaluating Large Language Models’ Ability to Reference and Cite Oncology Guidelines. In: Bellazzi, R., Juarez Herrero, J.M., Sacchi, L., Zupan, B. (eds) Artificial Intelligence in Medicine. AIME 2025. Lecture Notes in Computer Science(), vol 15735. Springer, Cham. https://doi.org/10.1007/978-3-031-95841-0_6 (Details)
Wunnava S, Miller TA, Nathan M, Bourgeois FT. FDA Approval of Cardiac Valve Devices Implanted in a National Cohort of Pediatric Patients, 2016-2022. JAMA Pediatr. Published online March 24, 2025. doi:10.1001/jamapediatrics.2025.0131 (Details)
Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy Miller, Danielle S Bitterman, Guanhua Chen, Anoop Mayampurath, Matthew M Churpek, Majid Afshar, Uncertainty estimation in diagnosis generation from large language models: next-word probability is not pre-test probability, JAMIA Open, Volume 8, Issue 1, February 2025, ooae154, https://doi.org/10.1093/jamiaopen/ooae154 (Details)
WonJin Yoon, Shan Chen, Yanjun Gao, Zhanzhan Zhao, Dmitriy Dligach, Danielle S Bitterman, Majid Afshar, Timothy Miller, LCD benchmark: long clinical document benchmark on mortality prediction for language models. Journal of the American Medical Informatics Association, 2024, ocae287, https://doi.org/10.1093/jamia/ocae287 (Details)
Weipeng Zhou, Timothy Miller. 2024. Generalizable clinical note section identification with large language models, JAMIA Open, Volume 7, Issue 3, October 2024, ooae075, https://doi.org/10.1093/jamiaopen/ooae075 (Details)